Техническое оживление мамонтов близится

Техническое оживление мамонтов близится
Деятели науки также установили, что горчичная жгучесть у растений появилась вовсе не для гурманов, а для борьбы с гусеницами.
Свою вариацию пересказа статьи из журнале Cell Reports, рассказывающей о том, для чего ученые провели «тщательный анализ генома мамонта», предлагает «Лента.ру».
«Тщательный анализ генома мамонта показал ученым изменения в генах, которые позволили этим представителям семейства слоновых выживать при низких температурах последнего ледникового периода. Данное открытие еще на один шаг приблизило науку к технической возможности вернуть на планету вымерших животных. О генетической основе уникальности мамонтов сообщается в журнале Cell Reports.

Винсент Линч (Vincent Lynch) из Чикагского университета и его коллеги провели глубокое секвенирование геномов двух мамонтов и трех азиатских слонов — ближайших родственников мамонтов. Все геномы сравнивались друг с другом, а также с геномом африканского слона (представителя более далекого рода).
Генетики выявили примерно 1,4 миллиона вариантов генов, уникальных для мамонтов. Эти варианты меняли белки, вырабатываемые примерно 1600 генами. Затем ученые обратились к массивным базам данным — для оценки функций генов и их влияния на жизнедеятельность организма.
Оказалось, что характерные для мамонтов изменения генов были ближе всего связаны с метаболизмом жиров (в том числе бурого жира), инсулиновой сигнализацией, ростом волос и развитием кожи (в том числе гены, ассоциирующиеся с более светлой шерстью), ощущением температуры и суточным ритмом. Все эти свойства организма имели важное значение для адаптации к экстремальному холоду и полярной ночи. Наконец, ученые определили гены, определяющие анатомические особенности мамонтов (форму черепа, маленькие уши и короткие хвосты).
Особый интерес для исследователей представляла группа генов, отвечающих за ощущение температуры, которые также играют важную роль в росте волос и запасании жира. Ученые смогли воссоздать древний вариант одного из этих генов (TRPV3). При пересадке его в клетки человека оказалось, что TRPV3 мамонта вырабатывает белок, реагирующий на тепло слабее, чем тот, что кодируется слоновьей версией TRPV3. Аналогично, лабораторные мыши, в организме которых TRPV3 был отключен искусственным образом, предпочитают холодные помещения, а их волосы более волнистые.
Хотя функции выявленных учеными генов в целом хорошо соотносятся с условиями среды обитания мамонтов, Линч предупреждает, что по одному лишь геному невозможно определить, на что именно влиял тот или иной ген.
«Мы не можем точно узнать о действии этих генов, пока кто-нибудь не воскресит живого мамонта. Впрочем, кое о чем можно догадаться с помощью лабораторных экспериментов», — сообщил ученый. Сейчас Линч и его коллеги планируют экспрессировать белки мамонтов в клетках слонов.
Хотя целью Линча является изучение молекулярных основ эволюции, генетик признает, что высококлассное секвенирование и анализ генома мамонта может стать основой для проекта «воскрешения» древних животных.
«Со временем мы получим техническую возможность это сделать. Но вопрос в другом: стоит ли осуществлять подобное? Лично я считаю, что нет. Мамонты вымерли, а среда, в которой они жили, изменилась. Есть немало животных на грани вымирания, требующих нашей помощи»,- заключил генетик,- повествуется в материале «Ленты.ру».

В свою очередь «Наука и жизнь» решила рассказать историю о том, «как гусеницы «создали» жгучую горчицу».
Издание со ссылкой на статью в Proceedings of the National Academy of Sciences отмечает, что «горчичная жгучесть» у растений появилась, оказывается, «не просто так, и не для нашего гастрономического удовольствия, а в результате эволюционной борьбы с гусеницами».

gusenica«Исследователи сравнили генеалогические деревья растений семейства Капустные, к которым относится горчица, и поедающих их бабочек-белянок, и выяснили, что эволюционная гонка вооружений между теми и другими началась довольно давно. (На всякий случай напомним, что возраст того или иного вида можно определить по уровню сходства и различия между его генами и генами его родственников; поскольку мы можем оценить скорость накопления мутаций, то можем и определить время, когда виды-родственники разошлись от своего общего предка.) Около 90 млн лет назад, по словам авторов работы, предок современной капусты, горчицы, редиса, васаби, хрена и прочих замечательных овощей научился синтезировать глюкозинолаты – вещества, токсичные для большинства насекомых. Именно они в большом количестве содержатся в горчичном масле.
Прошло несколько десятков миллионов лет, и бабочки нашли, чем ответить – у них появился белок, обезвреживающий токсины. Гусеницы белянок получили обширную и разнообразную кормовую базу, так что в семействе появились новые виды, кормящиеся на горьких и жгучих растениях. Теперь настал черёд самих растений, и они стали изобретать новые виды глюкозинолатов, используя в качестве сырья для их синтеза разные аминокислоты; сейчас этих веществ насчитывается около 120. Насекомым оставалось только совершенствовать своё умение обезвреживать токсин, приспосабливая свой биохимический аппарат к новым разновидностям глюкозинолатов.
Такая эволюционная «гонка вооружений» совсем не редкость. Кстати говоря, именно капустные растения и бабочки-белянки с 60-х годов прошлого века стали классическим примером коэволюции, влияния видов друг на друга в ходе их исторического развития. Однако далеко не всегда понятно, как именно это происходит, и в случае с бабочками и растениями гипотеза также требовала дополнительных подтверждений (хотя взаимное влияние, казалось бы, было очевидным). И вот, наконец, биологам удалось понять, как всё происходило: исследователям удалось не только соотнести историю появления новых видов с этапами биохимической войны, но и описать её генетический механизм. Обе стороны в ней использовали не столько единичные мутации в уже существующем гене, которые могли бы настроить его к новым условиям, сколько удвоение гена – с тем, чтобы его новая копия приобретала новые функции, тогда как оригинал мог продолжать работать, как раньше. Естественно, авторам работы пришлось призвать на помощь современные молекулярно-генетические методы, которых в середине прошлого века просто не было.
Именно необходимость изыскивать всё новые средства для борьбы с гусеницами заставляла Капустных генерировать всё новые и новые виды (и то же самое справедливо и для бабочек: поиски очередного противоядия приводили к появлению новых разновидностей белянок). У современных видов можно найти самые разнообразные коктейли глюкозинолатов, причём у некоторых видов они проходят дальнейшую модификацию, опять-таки в рамках улучшения защиты от насекомых. О том, насколько разнообразным может быть их состав, можно судить по тому, что, к примеру, вкус редиса и цветной капусты создаётся большей частью именно глюкозинолатами. Для человека далеко не все из них жгучие, некоторые просто добавляют овощам своеобразную горечь и запах, впрочем, и жгучесть человек научился использовать к своему удовольствию. Наверно, можно только радоваться, что растения были так заняты войной с гусеницами, что не обращали внимание на то, что их едят ещё и люди,- повествуется в материале «Науки и жизни».