Ученые ударились в создание РНК-мира

Ученые ударились в создание РНК-мира
Видимо, в ученом мире все более актуальным становится вопрос о том, почему, собственно, рибонуклеиновые кислоты (РНК) уступили своеобразное первенство в процессе эволюции ДНК. Разные команды исследователей пытаются выстроить свои гипотезы и представить свои картины так называемого РНК-мира.
К примеру, практически все знающая «Наука и жизнь» в своем пересказе опубликованного в Nature Structural and Molecular Biology исследования ученых из Университета Дьюка сообщает, что по мысли данных исследователей ДНК выиграла эволюционное состязание с РНК потому, что «в двуспиральной РНК невозможны структурные перестройки, которые в ДНК обеспечивают устойчивость молекулы к химическим модификациям», попутно разъясняя всем желающим, что, собственно, «представляет собой ДНК».

«Мы часто слышим о том, что жизнь на Земле началась с РНК – именно рибонуклеиновые кислоты стали первыми, кто научился не только хранить информацию, но и передавать её из поколения в поколение и, что немаловажно, допускать при этом определённый процент ошибок, открывающий путь отбору.
По гипотезе РНК-мира, в древнейшем океане на нашей планете плавали молекулы РНК, которые копировали сами себя и соревновались друг с другом за ресурсы – например, за нуклеотиды, которые служат для РНК строительными «кирпичиками».
Однако со временем РНК отошла на второй план, и у современных организмов (за исключением некоторых вирусов) вся наследственная информация хранится в ДНК, а РНК стала копией-посредником, которая синтезируется на определённом гене, а потом направляется к белок-синтезирующей машине. Ещё есть масса разновидностей РНК, выполняющих в клетках важнейшие регуляторные функции, но, так или иначе, хранением наследственной информации и РНК сейчас не занимается.
Почему так произошло? Известно, что ДНК намного устойчивее, чем РНК, и один из механизмов такой устойчивости описывают в своей статье в Nature Structural and Molecular Biology Хашим Аль-Хашими (Hashim M Al-Hashimi) и его коллеги из Университета Дьюка. Но прежде чем перейти к сути их работы, нужно вспомнить, что представляет собой ДНК.
Мы знаем, что это двуспиральная молекула, напоминающая винтовую лестницу – каждая нить ДНК сложена последовательностью рибонуклеотидов, в состав которых входят остаток фосфорной кислоты, сахар дезоксирибоза и азотистое основание. Именно азотистые основания, числом четыре (аденин А, тимин Т, гуанин G, цитозин С), и образуют генетический текст.
В ДНК основания обращены внутрь «лестницы», причём азотистые основания одной нити ДНК соединяются с основаниями другой нити, образуя «перекладины». Однако основания соединяются с собой не абы как, а по определённому правилу комплементарности: аденин – с тимином, гуанин – с цитозином. Заслуга Уотсона и Крика, построивших модель ДНК, именно в том, что они поняли, что именно такое соединение нуклеотидов в разных цепях позволяет сделать устойчивую длинную молекулу, которая сможет передавать информацию своей «дочке».
При репликации (то есть при удвоении ДНК) на каждой её цепи в соответствии с правилом комплементарности синтезируется новая цепь, и благодаря строгому соединению А с Т и G с С две новые двуспиральные молекулы ДНК выглядят так же, как и прежняя материнская молекула. (Тут стоит заметить, что на самом деле старая молекула расходится на две цепи, и каждая из старых цепей отходит по наследству дочерним молекулам, но в молекулярные тонкости репликации мы сейчас погружаться не будем.)
Но довольно скоро оказалось, что нуклеотиды в комплементарных цепях могут спариваться друг с другом по-разному. Это не значит, что аденин вдруг встанет в пару с гуанином – сами напарники будут те же, просто химические связи между ними будут немного иные. Схему неканонического спаривания нуклеотидов предложил Карст Хугстин, и с тех пор кроме стандартных уотсон-криковских пар существуют ещё и хугстиновские пары. Повторим ещё раз, что при спаривании по Хугстину аденин по-прежнему стоит в паре с тимином, а гуанин с цитозином, просто в их молекулах связи образуются между другими атомами, и сами азотистые основания несколько иначе развёрнуты в пространстве друг относительно друга.
Разные виды спаривания нуклеотидов действительно есть в природной ДНК: несколько лет назад Аль-Хашими и его сотрудники показали, что пары нуклеотидов переходят в хугстиновскую форму, когда ДНК связывается белками или же когда в ней случатся химические повреждения. Когда белок покидает ДНК и когда повреждения устраняются, пары оснований возвращаются в обычное, уотсон-криковское состояние.
В РНК же, как оказалось, никаких хугстиновских взаимодействий не получается. РНК тоже может существовать в форме двойной спирали, однако основания в ней всегда спарены по Уотсону и Крику, вне зависимости от внешних условий и вне зависимости от нуклеотидной последовательности самой РНК.
Более того, когда в РНК вносили химическую модификацию, которая в ДНК заставляла азотистые основания перейти в хугстиновскую конфигурацию, то цепи РНК в таком случае просто расходились друг с другом. Вообще говоря, параметры двуцепочечных спиралей ДНК и РНК отличаются, и, по мнению авторов работы, поскольку спираль РНК более плотная, то никакие переходы от одной схемы взаимодействия к другой в ней просто невозможны.
Иными словами, взаимодействия по Хугстину добавляют ДНК гибкости и прочности: в случае каких-то химических неприятностей её цепи не разойдутся друг с другом, а подождут, когда их отремонтируют. Возможно, хугстиновские взаимодействия оказываются кстати вообще при работе с белками – а ведь ДНК постоянно приходится работать с белками, которые приходят либо для того, чтобы активировать какой-то ген, или чтобы начать репликацию, или для того, чтобы исправить мутацию. Двуспиральная молекула РНК в этом смысле оказывается более жёсткой и хрупкой, и потому менее подходящей на роль хранителя генетической информации,- повествует все знающая «Наука и жизнь» в своем пересказе опубликованного в Nature Structural and Molecular Biology исследования ученых из Университета Дьюка.

В свою очередь и «Лента.ру» в своем пересказе опубликованного в журнале Proceedings of the National Academy of Sciences исследования биологов из Исследовательского института Скриппса также затрагивают тему создания так называемого РНК-мира, повествуя о том, что данным ученым «удалось синтезировать ферменты рибозимы, способные быстро и точно копировать сложные РНК-цепочки».

дополнительные материалы
Бактерию выводят в биосенсоры человека

«Рибозимы представляют собой молекулу РНК, которая обладает каталитическим действием. Они могут расщеплять или синтезировать другие соединения, а также участвовать в своей собственной сборке (реплицироваться). Ученые считают, что они должны были существовать до появления клеток и проводили биохимические реакции, необходимые для возникновения живых организмов.
Исследователи прибегли к искусственной эволюции, чтобы создать эффективный катализатор. В качестве основы они взяли РНК-полимеразный рибозим, который участвует в процессе транскрипции. Этот фермент использует молекулу РНК, чтобы построить комплементарную ей нуклеиновую кислоту. Однако функциональность полимеразы изначально была очень ограниченной, и она не могла синтезировать сложные структуры. Кроме того, нельзя было создать точную копию РНК, что требовало от рибозима двух шагов — сборку комплементарной цепи и осуществления ее обратной транскрипции.
Ученые внесли в рибозим случайные мутации, создав популяцию из 100 триллионов версий РНК-полимераз. Чтобы воспроизвести принцип естественного отбора, исследователи разработали систему, позволяющую выделить только те рибозимы, что были способны к синтезу двух различных и сложных цепей РНК. Последние должны были уметь прочно связываться с конкретными молекулами, что свидетельствовало о точности копирования. Затем начинался новый этап эволюции, в котором в отобранные рибозимы также вносили мутации.
После двадцати циклов один из рибозимов (обозначался как 24-3) мог не только строить две разные цепи из рибонуклеотидов, но и другие сложные молекулы РНК, существующие в природе. Он оказался способен синтезировать до 40 тысяч копий исходной молекулы в течение 24 часов.
Биологи планируют дальнейшие эксперименты, чтобы улучшить работу фермента и дать ему возможность осуществлять как сборку более длинных цепочек РНК, так и собственное копирование,- повествует «Лента.ру» в своем пересказе опубликованного в журнале Proceedings of the National Academy of Sciences исследования биологов из Исследовательского института Скриппса.

дополнительные материалы
Будут и франкенштейновы пигмалионы