Превосходящие макак человеческие нейроны сонно ремонтируют ДНК

Превосходящие макак человеческие нейроны сонно ремонтируют ДНК
Специализирующиеся на открытиях науки издания в своих пересказах выпячивают эффективность нейронов человеческого мозга в сравнении с нейронами макак и заново превозносят лечебные свойства сна, в коем происходит починка ДНК граждан
О не только сугубо медицинских свойствах восстановления ДНК в нейронах, полученных человеком в ходе эволюции, повествует в своем пересказе содержательной части опубликованной в Nature Communications статьи вездесущая «Наука и жизнь».

КАК ИДЕТ ПОЧИНКА ДНК В НЕЙРОНАХ

«Для ремонта ДНК у клетки есть целые молекулярные комплексы, специализирующиеся на тех или иных повреждениях. Если речь идёт о разрыве, то белки, которые занимаются разрывами, должны правильно сблизить разорванные концы и сшить их. Сблизить концы непросто – ДНК всегда усажена большим количеством белков, которые её поддерживают, считывают с неё информацию и т. д. Двигать её для сшивания нужно так, чтобы не возникло конфликта с другими процессами.
Prevoskhodyashchie makak chelovecheskie nejrony sonno remontiruyut DNKИсследователи экспериментировали с личинками рыбы полосатый данио – как большинство живых организмов, рыбы не могут обходиться без сна, в свою очередь, смена сна и бодрствования у них регулируется биологическими часами. Окрасив специальными красителями хромосомы в нейронах личинок, авторы работы заметили, что, во-первых, во время сна хромосомы в нейронах начинают активно двигаться. Во-вторых, число двойных разрывов в ДНК увеличивалось во время бодрствования и уменьшалось во время сна. В-третьих, число разрывов уменьшалось именно благодаря динамике хромосом, благодаря тому, что они во время сна активнее двигались. Если эти движения блокировали с помощью особого белка, который прикреплял хромосомы к оболочке ядра, ДНК так и оставалась повреждённой, несмотря на сон.
Также оказалось, что активный ремонт хромосом во время сна свойствен именно нейронам. В других клетках, которым не свойственно электрическое возбуждение, которые не проводят никаких электрических сигналов, такой закономерности не было. Отсюда можно сделать вывод, что именно электрохимическая активность нейронов во время бодрствования мешает им ремонтировать собственную ДНК. Наконец, если число разрывов в ДНК дополнительно увеличивали с помощью вещества-мутагена, то личинки спали дольше – как если бы нейроны чувствовали, что им нужно больше времени на ремонт хромосом,- обрисовывается ремонтная ситуация в пересказе.

дополнительные материалы
Что есть сон

Ну, и – после столь протяженного перечисления со множеством «если» - лапидарный итог, который также является, по сути, вариацией на тему «вероятно».
Из той вариации следует: «во время бодрствования» нейроны чересчур «активны, и белки, ремонтирующие разрывы в ДНК, не могут выполнять свою работу, как надо», посему «им, вероятно, просто неудобно работать с ДНК», но вот в состоянии сна «нейроны относительно успокаиваются, и хромосомы можно перемещать так, чтобы было удобно их ремонтировать».
Поскольку деятели науки экспериментировали на рыбах, наверняка и со стопроцентной научной точностью сказать о том, как идет аналогичный процесс у человека и других земных живых существ, вроде бы невозможно (для этого по этическим научным принципам нужны же результаты конкретных опытов), однако в пересказе почему-то выражается уверенность, что – идентично. Такая почему-то универсальная верность идентичности поведения.
Что касается эффективности нейронов в человеческом мозгу, чем в мозгах макак,- о сем вроде бы полученном человеком в ходе эволюции преимуществе повествуют в своем пересказе статьи в Cell «Элементы».

ПОЧЕМУ ЧЕЛОВЕЧЕСКИЕ НЕЙРОНЫ ЭФФЕКТИВНЕЕ МАКАК

Prevoskhodyashchie makak chelovecheskie nejrony sonno remontiruyut DNK1«Различия нервных систем человека и других обезьян чаще всего ищут на уровне анатомии — к примеру, сравнивают относительные размеры головного мозга и его частей у разных видов. Гораздо реже в этом контексте обращают внимание на функционирование его областей, групп клеток и единичных нейронов. Исследователи из Института Вейцмана (Израиль) и Калифорнийского университета в Лос-Анджелесе (США) проанализировали записи активности отдельных клеток поясной коры и миндалины (амигдалы) у макак-крабоедов и людей и обнаружили две закономерности. Во-первых, в пределах одного вида клетки эволюционно более новой поясной коры кодируют информацию эффективнее, чем клетки более древней миндалины. Во-вторых, в пределах заданной области мозга у более умного вида, Homo sapiens, нейроны оказываются более эффективными кодировщиками, чем нейроны одноимённой области у менее интеллектуально развитых Macaca fascicularis. Однако создаваемый клетками амигдалы и поясной коры человека «нейронный код» теряет в надежности, и это может быть одной из причин частых психологических проблем у представителей нашего вида,- поясняется в пересказе.

При этом отмечается, что «главная функция нервных клеток — передавать информацию», и большинство животных по факту получили от эволюции нервную систему, коя «состоит хотя бы из нескольких нейронов, выполняющих разные задачи».
Однако «у млекопитающих количество клеток в нервной системе таково, что среди них неизбежно появляются функциональные двойники, передающие сходные группы сигналов, делающие это с одинаковой частотой и т. д.». Коль «несколько клеток долгое время выдают пачки спайков (потенциалов действия) примерно одной длительности с близким числом импульсов» - «такие клетки можно считать взаимозаменяемыми». Коль в силу каких-то причин «одна из них не передаст положенные сигналы» - «нейроны с близкими свойствами компенсируют эту потерю». Эту компенсационную возможность обозначили термином «robustness», что в переводе близко по смыслу к «надежности» и «помехоустойчивости».
Но, «с другой стороны», как отмечается в пересказе, «если много клеток посылают практически одинаковую информацию, это означает, что они работают не самым эффективным образом, ведь при этом на передачу одного и того же «слова» тратится энергия сразу нескольких нейронов», поскольку «за то же время такое же количество клеток», как указывается в пересказе, «может отправить больше информации (заключенной в разных «словах»)», коль «все сигналы, передаваемые клетками, будут разными».
Чтобы обозначить «количество уникальной информации, передаваемой определенным числом нейронов за единицу времени», - статья в Cell вводит термин «efficiency», то есть – «эффективность». Причем строго конкретную «эффективность», в которой «чем больше клеток нужно для передачи определенного массива данных, тем больше на это тратится энергии и тем ниже эффективность такой передачи».

«Надежность клеток в плане кодирования информации особенно важна, если им требуется выдать критически важный для выживания сигнал — скажем, о присутствии хищника или о ядовитости того или иного растения. Всем живущим в дикой природе, в том числе участвовавшим в обсуждаемом исследовании макакам-крабоедам (Macaca fascicularis), вовремя отслеживать такие сигналы крайне необходимо. Освоившим цивилизацию людям уже давно это чуть менее нужно и важно. Зато Homo sapiens обладают наиболее развитой способностью к обучению, а чтобы ее обеспечить, надо быстро воспринимать большие количества информации. Стало быть, им необходимы нейроны с высокой эффективностью кодирования: это обеспечит большую ширину пропускного канала за счет того же количества клеток.
Prevoskhodyashchie makak chelovecheskie nejrony sonno remontiruyut DNK2Анализировать все нейроны на предмет их надежности и эффективности не только технически невозможно, но и бессмысленно. На выходе такого анализа получится «средняя температура по больнице», которая в лучшем случае не даст новой информации, а в худшем лишь запутает исследователей. Поэтому, чтобы выяснить, есть ли у нейронов людей и макак различия в эффективности и надежности кодирования, авторы публикации в Cell выбрали два участка мозга — поясную кору и миндалину (амигдалу). Эти две области тесно связаны между собой как анатомически, так и функционально. Отростки клеток миндалины тянутся в поясную кору, и в обратном направлении связи тоже имеются. Оба региона (точнее, обе пары регионов, так как это парные образования) входят в состав лимбической системы — группы структур головного мозга, обеспечивающих появление эмоций в ответ на конкретные события. Также лимбическая система играет заметную роль в обучении (поступающей информации нужно давать эмоциональную оценку), обонянии (в ее состав входит обонятельная кора) и сна. Но есть и различия. Поясная кора эволюционно моложе миндалины, она относится к неокортексу (новой коре), вовлечена в принятие решений и задает мотивацию к обучению. Миндалина — это подкорковая структура, и она теснее связана с генерацией эмоций, особенно отрицательных: страха и грусти. Условно можно сказать, что по сравнению с амигдалой поясная кора занята более высокоуровневыми процессами.
Хотя нервные клетки — одни из самых мелких в организме млекопитающих, современные методы позволяют регистрировать электрическую активность отдельных нейронов. Электроды для этой цели имплантировали в амигдалу и поясную кору пяти взрослых самцов макак-крабоедов, а точные места их установки проверили с помощью МРТ. Похожую процедуру провели и семи людям — четырем женщинам и трем мужчинам в возрасте от 18 до 46 лет, но здесь изначально цель была другая. Люди-испытуемые страдали эпилепсией, симптомы которой не удавалось ослабить лекарствами. В таких случаях chelovecheskie nejrony v kulture kletok u pacientov s boleznyu Parkinsonaдля улучшения состояния больных очаги нейронов с аномальной активностью удаляют или обрезают их связи с другими областями мозга, чтобы излишнее возбуждение не вызывало припадков и не перекидывалось на другие регионы центральной нервной системы. Чтобы точно определить расположение очага эпилептической активности, таким пациентам на несколько дней в места предположительной локализации таких очагов вживляют электроды, регистрирующие сигналы отдельных клеток или их групп. По записям сигналов, полученным в ходе такого мониторинга, вычисляют, от какого участка необходимо избавиться. Аналогичную процедуру провели и в рамках обсуждаемого исследования.
Сравнивать эффективность передачи данных непросто, так как разные клетки изначально наделены разными возможностями. Частота, с которой нейроны способны посылать сигналы, неодинакова. Большую роль играет и внимание: одна и та же информация запомнится с совершенно разной степенью подробности, если сфокусироваться на ней и если «пропускать ее мимо ушей». Поэтому авторы сравнивали электрическую активность клеток миндалины и поясной коры людей и макак, проявившуюся в ходе выполнения мало похожих друг на друга заданий, а также в промежутках между этими заданиями, когда четко выраженных внешних стимулов не было. Люди-испытуемые по 5–10 раз смотрели блоки из 5–10-секундных видеороликов (в блоке было 10–16 видеороликов, каждый раз порядок роликов менялся, в одном блоке ролики никогда не повторялись), а затем пересказывали содержание каждого видео, которое могли вспомнить. Испытание прекращалось, когда человек описал сюжет всех без исключения показанных ему роликов,- разъясняет пересказ.

Ну, а у обезьян, ясное дело, все обстояло несколько иначе.

obezjani«У трех обезьян сначала вырабатывали условный рефлекс: после звука определенной высоты в маску, надетую на животное, запускали немного отвратительно пахнущей пропионовой кислоты, и так делали 30 раз. Затем этот же рефлекс затормаживали, десять раз предъявляя звук без неприятного запаха. Двум другим животным несколько дней подряд показывали различные изображения (время показа одной и той же картинки в разные предъявления составляло от 30 до 330 миллисекунд, что усложняло обучение), и, если во время пребывания на экране «нужной» картинки макака двигала рычаг в правильную сторону, она получала небольшое количество сока.
Эффективность и надежность передачи информации отдельными нейронами оценивали так. Записи электрической активности разбивали на фрагменты по 1 мс и смотрели, выдала ли клетка за это время хотя бы один потенциал действия (спайк; их за 1 мс могло пройти и больше одного). Наличие спайков засчитывали за 1, отсутствие — за 0. Единицы и нули были буквами импровизированного алфавита. Соседние буквы объединяли в «слова» длительностью 4, 8 или 16 мс в зависимости от выбора экспериментаторов. Среднее число спайков, сгенерированных в единицу времени, определяло рабочую частоту нейрона. Реальный нейрон сравнивали с математической моделью идеально эффективной клетки, работающей на той же частоте, и смотрели, насколько меньше информации передаст первый, сколько единиц будут содержать его «слова» и насколько часто будут встречаться те или иные комбинации «букв». Например, клетка может 90% времени выдавать только «слово» 1011, а оставшиеся 10% — 1111. Другой нейрон на той же частоте «говорит» и 1011, и 1111, и 0001, и 1010 — каждую комбинацию в 25% случаев. Он работает более эффективно, так как в одиночку может передать четыре разных набора данных. А вот первому нейрону, чтобы «сказать» то же самое, понадобятся еще и соседи, умеющие воспроизводить 0001 и 1010.
Ученые определяли эффективность не только отдельных нейронов, но и их пар и даже троек — при этом клетки в паре и тройке должны были иметь одинаковую рабочую частоту. «Словами» групп клеток считали пары «слов», воспроизведенных ими одновременно. Более эффективной считалась та пара, «слова» которой были наиболее разнообразны.
Сравнения нейронов из разных областей мозга и у представителей разных видов во всевозможных комбинациях дали неожиданную, но стройную картину. Отдельные клетки и их пары у макак в среднем кодировали информацию менее эффективно, чем у человека, но более надежно. Иными словами, среди обезьяньих нейронов, работающих на одной частоте, было проще найти клетки, «говорящие» одно и то же, и их «словарный запас» был беднее. У обоих видов эффективность передачи данных была выше в клетках поясной коры, зато работа клеток амигдалы — надежнее. Очень важно, что эти закономерности работали не только во время выполнения испытуемыми заданий, но и в периоды отдыха, когда никто специально не давал им значимых внешних стимулов. Это дает серьезную надежду, что обнаруженный компромисс между эффективностью и надежностью кодирования информации универсален и не зависит от того, что и в каких условиях клетки делают в каждый конкретный момент.
Получается, чтобы передавать больше информации ограниченным числом клеток в единицу времени, приходится терять в надежности, давая каждому нейрону уникальную задачу. Как следствие, потерю информации от любой клетки сложнее восполнить. В более новой и «высокоуровневой» поясной коре нейроны особенно эффективны, но наименее надежны как у макак, так и у людей. Значит, она способна быстрее воспринимать и передавать большие объемы разнообразной информации. Именно это и нужно было нашим предкам, чтобы выживать в быстро меняющихся условиях,- подчеркивается в пересказе.

В нем содержится по-своему интересный вывод о том, что «вполне вероятно, что за счет описанных различий в функциональности люди более обучаемы, чем другие приматы».

«Однако снижение надежности (помехоустойчивости) передачи данных может быть, как предполагают авторы, причиной частого формирования неадаптивного поведения у Homo sapiens, в особенности связанного с эмоциями. Грубо говоря, наши нейроны нередко фиксируют события и связи между ними, не имеющие большого значения, и затем некоторым из них уделяют слишком много внимания. Отсюда могут проистекать расстройства настроения, многие «беспричинные» страхи и тревоги.
Может возникнуть вопрос, корректно ли сравнивать активность нейронов у макак со здоровым мозгом и больных эпилепсией людей. Предвидя такое сомнение, авторы сообщают, что во всём массиве записей нейронной активности пациентов только 6% данных были получены от клеток, лежащих в эпилептических очагах. Исключение их из анализа не привело к появлению значимых различий в результатах. Кроме того, работа клеток в составе таких очагов должна быть более синхронной, чем у здоровых нейронов, — то есть в терминах статьи они передают данные более надежно, но менее эффективно. Но результаты исследования говорят об обратном: у человеческих нервных клеток ниже надежность, зато больше эффективность. Так что использование данных от больных эпилепсией навряд ли искажает картину,- резюмируется в пересказе.

Собственно, и о том, и о другом, описанном и в том и другом пересказах, деятели науки неоднократно уже вещали с различных трибун и научных подмостков, но от тех восхвалений человек и сам мир, в коем граждане пребывают, вряд ли стал кардинально лучше.
Быть может, главный позитив состоит в том, что он вообще еще существует.